Matching regions in the plane using non-crossing segments
نویسندگان
چکیده
In memory of our friend, Ferran Hurtado. Given a set S = {R1, R2, . . . , R2n} of 2n disjoint open regions in the plane, we examine the problem of computing a non-crossing perfect region-matching: a perfect matching on S that is realized by a set of non-crossing line segments, with the segments disjoint from the regions. We study the complexity of this problem, showing that, in general, it is NP-hard. We also show that a perfect matching always exists and can be computed in polynomial time if the regions are unit (or more generally, nearly equal-size) disks or squares. We also consider the bipartite version of the problem in which there are n red regions and n blue regions; in this case, the problem is NP-hard even for unit disk (or unit square) regions.
منابع مشابه
Long non-crossing configurations in the plane (Draft)
It is shown that for any set of 2n points in general position in the plane there is a non-crossing perfect matching of n straight line segments whose total length is at least 2/π of the maximum possible total length of a (possibly crossing) perfect matching on these points. The constant 2/π is best possible and a non-crossing matching whose length is at least as above can be found in polynomial...
متن کاملNon-crossing Bottleneck Matchings of Points in Convex Position
Given an even number of points in a plane, we are interested in matching all the points by straight line segments so that the segments do not cross. Bottleneck matching is a matching that minimizes the length of the longest segment. For points in convex position, we present a quadratic-time algorithm for finding a bottleneck non-crossing matching, improving upon the best previously known algori...
متن کاملFaster bottleneck non-crossing matchings of points in convex position
Given an even number of points in a plane, we are interested in matching all the points by straight line segments so that the segments do not cross. Bottleneck matching is a matching that minimizes the length of the longest segment. For points in convex position, we present a quadratic-time algorithm for finding a bottleneck non-crossing matching, improving upon the best previously known algori...
متن کاملQuasi-Parallel Segments and Characterization of Unique Bichromatic Matchings
Given n red and n blue points in general position in the plane, it is well-known that there is a perfect matching formed by non-crossing line segments. We characterize the bichromatic point sets which admit exactly one non-crossing matching. We give several geometric descriptions of such sets, and find an O(n log n) algorithm that checks whether a given bichromatic set has this property.
متن کاملQuasi - Parallel Segments and Characterization of 1 Unique Bichromatic Matchings
5 Given n red and n blue points in general position in the plane, it is well-known 6 that there is a perfect matching formed by non-crossing line segments. We charac-7 terize the bichromatic point sets which admit exactly one non-crossing matching. 8 We give several geometric descriptions of such sets, and find an O(n log n) algorithm 9 that checks whether a given bichromatic set has this prope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015